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In this work, we study the influence of polymer chain length (m), based on Lennard-Jones poten-
tial, and nanoparticle (NP)-polymer interaction strength (εnp) on aggregation and dispersion of soft
repulsive spherically structured NPs in polymer melt using coarse-grain molecular dynamics simula-
tions. A phase diagram is proposed where transitions between different structures in the NP-polymer
system are shown to depend on m and εnp. At a very weak interaction strength εnp = 0.1, a transi-
tion from dispersed state to collapsed state of NPs is found with increasing m, due to the polymer’s
excluded volume effect. NPs are well dispersed at intermediate interaction strengths (0.5 ≤ εnp ≤
2.0), independent of m. A transition from dispersion to agglomeration of NPs, at a moderately high
NP-polymer interaction strength εnp = 5.0, for m = 1–30, is identified by a significant decrease in the
second virial coefficient, excess entropy, and potential energy, and a sharp increase in the Kirkwood-
Buff integral. We also find that NPs undergo the following transitions with increasing m at εnp ≥ 5.0:
string-like → branch-like → sphere-like → dispersed state. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4799265]

I. INTRODUCTION

Nanoparticles (NPs) are the potential candidates for alter-
ing the thermophysical properties of polymer solution.1 For
instance, spherical fullerene particles dispersed in amorphous
polyethylene matrix enhance the elastic properties;2 addition
of a minute amount of silica particles is found to enhance the
viscosity of polypropylene melt dramatically;3 and alumina
particles in water-ethylene glycol solution agglomerate into
an elongated and dendrite-like structure which is found to be
more efficient in enhancing the thermal conductivity than the
spherical agglomerated phase.4 Therefore, the thermophysi-
cal properties of NP-polymer solution largely depend on how
NPs are arranged inside the fluid medium.5 Thus, understand-
ing the mechanism which governs the distribution of NPs in
a polymeric solution is immensely important for the devel-
opment of efficient technologies. Furthermore, the structured
assemblies of NPs are potential candidates for multifunc-
tional material and devices such as optoelectronic devices.6

The assembling of NPs in polymer matrix depends on
NP-polymer interaction,7 temperature,8 NP-polymer size
ratio,9 degree of polymerization,10 NPs’ volume fraction,11

and pH of the medium.12 All the parameters yield a preferen-
tial dominance or delicate balance between entropy and en-
ergy, which governs the assembly process and dispersion of
NPs in the polymer matrix.

Computer simulations play an important role to ex-
plore the parameter space in polymer nanocomposite sys-
tems. Numerous molecular simulation studies have been
done using coarse-grain models, derived from fully atomistic
simulations.13–17 These model systems have been quite suc-
cessful in explaining many experimental observations.18–26 In
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addition, various theoretic approaches such as mode coupling
theory,27, 28 density functional theory,29 self-consistent field
theory,30, 31 and PRISM theory32–34 have also been employed
to study the polymer nanocomposites. The dispersion and ag-
glomeration of NPs in the polymer matrix is shown to depend
on the NP-polymer interaction strength.24, 33 NP-NP local-
ization includes (i) direct contact aggregation, (ii) steric sta-
bilization, (iii) local-bridging attraction, and (iv) long range
“tele-bridging” attraction.33 Direct contact aggregation takes
place due to the fact that polymer entropy is higher away from
the NP surface. The chain molecules tend to increase the ex-
cluded volume to maximize its entropy. It yields an entropic
depletion attraction between NPs, which leads to the contact
aggregation of NPs at a very weak NP-polymer interaction
strength. As the interaction strength increases, steric stabiliza-
tion takes place. Further increase in NP-polymer interaction
strength leads to bridging of NPs via polymer layers.33–35

Most computer simulations have focused on the regimes
of contact aggregation and dispersion of nanoparticles. Less
attention has been given to the long range bridging of NPs
which could form NP-polymer network. The aggregation of
nanoparticles, sometimes, is of non-equilibrium nature, i.e.,
percolating gel-like structures,14, 15 which is sparsely stud-
ied. Furthermore, the effects of the degree of polymeriza-
tion on the dispersion and aggregation of NPs are poorly un-
derstood, such as the mechanism of string-like, sphere-like,
and branched-like aggregation of NPs, which depends on the
polymer size and pH of the medium as reported in some of the
recent experiments.12, 36–39 Even though the non-equilibrium
studies are very few in the literature, the present work is an
equilibrium study. Main objective of this work is to under-
stand the NP-polymer network in detail employing molecular
dynamics (MD) simulations with a structural representation
of the NP using coarse-grain model. In addition, this work
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aims to illustrate the influence of the size of polymer on aggre-
gation and dispersion of NPs in polymer melt systematically,
by considering a wide range of polymer chain length and
NP-polymer interaction strength, using MD simulations. In a
recent work, Liu et al. has argued that the clustering of NPs at
a strong NP-polymer interaction is governed by the entropic
forces.24 The entropic forces, by its nature, bring disorder in
any system. Therefore, it is arguable to claim that the entropy
leads to agglomeration of NPs in a polymer matrix, particu-
larly when the polymer and NP are strongly interacting. We
revisit the dispersion-aggregation mechanism with quantita-
tive measurement of the entropy, potential of mean force, sec-
ond virial coefficient (B2), and the Kirkwood−Buff integrals
(KBI) for the NPs distribution in polymer melts to reveal the
correct mechanism of dispersion and agglomeration.

The rest of the paper is organized as follows. In Sec. II,
we describe the model and simulation method in detail. Re-
sults and discussion are presented in Sec. III. Finally, the con-
clusions are drawn in Sec. IV.

II. MODEL AND METHOD

In this work, the polymers are modeled as linear chains.
Each chain consists of coarse-grained beads; adjacent beads
are connected through the FENE potential:40

VFENE = −0.5kR2
0 ln

[
1 −

(
r

R0

)2]
, (1)

where R0 = 1.5σ is a finite extensibility and k = 30ε/σ 2

is a spring constant. VFENE = ∞ when r ≥ R0. Here, σ is
the monomer diameter and ε is the energy parameter. The
choice of parameters prevents the crossing of chain. The dis-
persive interaction between any pair of beads is represented
by the Lennard-Jones (LJ) potential:

V (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

. (2)

The LJ potential is truncated and shifted at a cut off distance,
rc = 2.21/6σ . The NPs are modeled as rigid bodies. Each NP
is made of 90 beads of size σ placed on the surface of a sphere
of diameter 4σ . Thus, the size of a NP (D) is 5σ . All the beads
are of equal mass which is same as that of a monomer unit of
a polymer chain. The model is considered with the same spirit
as proposed by Zhang and Glotzer.41 This is a lower level of
coarse-grain model which captures the roughness of NP sur-
face to some extent, in comparison to single smooth sphere
or bead depiction of NP. Any pair of beads from two differ-
ent NPs interacts through Weeks-Chandler-Andersen (WCA)
potential, Eq. (2), with rc = 21/6σ . The beads of the same
NP do not interact. The interaction between bead of NP and
monomer unit of chain is attractive in nature and represented
by Eq. (2) with rc = 2.5σ .

The MD simulations are performed in a NVT ensem-
ble. The monomer density is kept constant at 0.7σ−3. Several
chain lengths, m, are considered, keeping the total number
of monomer of solvent unchanged, which is fixed at 24000.
Therefore, 800 chains are taken for the chain length
m = 30, 2400 chains for m = 10, and 4800 chains for m = 5,

etc. Total number of NPs in the system is 18 and the corre-
sponding volume fraction is 0.034, as used by Liu et al.24 The
Nose-Hoover thermostat is applied to maintain the system
temperature. It is known that phase transitions in NP-polymer
system depend on the polymer size. For example, the vapor-
liquid transition is observed when the radius of gyration of
polymer is significantly larger than the size of the spherically
colloid suspension. Fluid-solid transition, on the other hand,
occurs for shorter chains.42 Our main objective, in this work,
is to study the structural properties of NP-polymer system in
a liquid state for a wide range of chain length. All the simu-
lations are performed in the liquid phase at T = 2ε/kB, where
kB is the Boltzmann constant. The choice of temperature and
density is such that all the chain lengths, considered in this
study, are in liquid phase. The phase diagrams of different LJ
chains can be found in Ref. 43. The velocity-verlet algorithm
is used to integrate the equation of motions with time step �t
= 0.001τ , where the unit of time τ =

√
ε/mσ 2, m is the mass

of a monomer unit. At each time step, the frozen subunits of a
NP move together as a rigid body.44 The initial configurations
are melted at a very high temperature, T = 5ε/kB, followed by
a slow temperature tunneling to the desired temperature. In
the tunneling process, the temperature is gradually reduced by
0.1 unit after 106 MD time steps until it reaches to T = 2ε/kB.
The systems are then equilibrated at the desired temperature
for 2 × 107 steps followed by 107 production steps. The equi-
librium time is long enough for the polymer to move at least
twice the radius of gyration of the polymer, Rg, which is the
equilibration criteria used in several works.20, 24 All the simu-
lations are performed using the large-scale atomic/molecular
massively parallel simulator (LAMMPS).45 MD snapshots are
generated using VMD molecular graphics package.46

III. RESULTS AND DISCUSSION

To explore the various possibilities of dispersion and ag-
gregation of NPs, we consider a wide range of NP-polymer
interaction strength, εnp. Here, εnp varies from 0.1 to 12.0 rep-
resenting very weak to very strong attraction, respectively. We
have represented the degree of polymerization by considering
chain molecules of varying lengths, which takes into account
all the three possible cases – (i) NP’s radius is smaller than
the radius of gyration of polymer, (ii) NP’s radius and radius
of gyration of polymer are of the same order, and (iii) NP’s
radius is larger than the radius of gyration of polymer.

First, we present the results for the polymer chain length
m = 30. In a pure melt state without the NPs, the average ra-
dius of gyration of the system is Rg = 2.73 ± 0.58σ which
is of the order of NP’s radius. Figure 1 presents the radial
distribution function (RDF) of NP-NP (gnn(r)) in a polymer
melt for εnp = 0.1, 0.5, 1.0, and 5.0. The configuration snap-
shots for few εnp values are given in Fig. 2. At εnp = 0.1, the
1st peak of gnn(r) is at r = 5σ , which is the diameter of NP.
This signifies that the NPs are in contact and they are in a
collapsed state as clearly seen in Fig. 2. Therefore, there is
a clear phase separation between the NPs and polymer melt.
In case of slightly stronger interaction strength, εnp = 0.5, we
observe gnn(r) to exhibit a small peak at r = 5σ before reach-
ing its ideal value of unity from below. This indicates steric
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FIG. 1. The NP-NP RDFs, gnn(r), for m = 30, at different NP-polymer in-
teraction strengths (εnp).

stabilization of NPs as also predicted from the PRISM
theory.33 Increase in εnp to 1.0 diminishes the direct contact
between the NPs, leading to well-dispersed NPs throughout
the medium. Further increase in εnp increases the magnitude
of the 1st peak of gnn(r) at r = 6σ . This is an indicative of
large number of bridging of the NPs via the polymer chains.
At considerably high interaction strength εnp = 5.0, a struc-
tural transition occurs where all the NPs tend to agglomerate
into a spherical-like aggregate as also evident from Fig. 2.
This is also reflected in gnn(r) in the form of a drastic rise
in the magnitude of the 1st peak at r = 6σ . At this state, all
the NPs are connected via a single layer of polymers lead-
ing to NP-polymer network. The aggregation state achieved
at εnp = 5.0 is insensitive to further increases in εnp as seen in

FIG. 2. The MD snapshots at different NP-polymer interaction strengths
(εnp) for m = 30. The connectivity between adjacent beads of chains is not
shown for clarity.

FIG. 3. The NP-NP RDFs, gnn(r), for m = 1, at different NP-polymer inter-
action strengths (εnp). Representative snapshots corresponding to RDFs are
shown in the inset of all the panels. The connectivity between adjacent beads
of the chains is not shown for clarity.

gnn(r) for εnp = 12.0, except for slight increase in the peaks
of second and third coordination shells (see Fig. 1). This
demonstrates the increment of two and three layers bridging
of NPs. Clearly, the NPs and polymer form a structured net-
work. Hence, with increasing εnp, we observe the following
transitions: collapsed state → dispersed state → aggregation
state. This is also in agreement with the work of Liu et al.24

Now, we turn our attention to the case when the size of
the NP is larger than that of the solvent. As a limiting size
of the solvent, we consider monomer, i.e., m = 1. The gnn(r)
for m = 1 is shown in Fig. 3 for various values of εnp, along
with its representative snapshots. The NPs and solvent do not
phase separate completely at εnp = 0.1, in contrast to the case
of m = 30. Instead, we observe a mixed state with some of
the NPs in smaller clusters forming contact segments and oth-
ers in bridge segments corresponding to the first and second
peaks (see Fig. 3) at r = 5σ and 6σ , respectively. The contact
segments and bridging segments are dispersed in the polymer
matrix. Nonetheless, with increasing εnp the behavior is sim-
ilar to m = 30, except the transition to a string-like bridge
network of NPs, which forms at εnp = 5.0.

In the third case, m = 50, the radius of gyration of the
pure melt (∼3.62 ± 0.75) is much larger than the radius of
NP. Figure 4 shows the gnn(r) along with the representative
MD snapshot for different interaction strengths for m = 50.
The NPs and polymer phase separate at weak NP-polymer in-
teractions as evident for εnp = 0.1. NPs are dispersed at inter-
mediate interaction strengths, 0.5 ≤ εnp ≤ 2.0. The behavior
at weak to moderate interaction strengths, for m = 50, is akin
to that seen for m = 30. The effect of longer chain length,
however, is noticed at very high interaction strengths, εnp

≥ 5.0, where NPs do not tend to agglomerate into a cluster.
This is also reflected in the 1st peak height of the gnn(r), at the
bottom panel of Fig. 4, which is considerably reduced com-
pared to that seen for m = 30 (Fig. 1) and m = 1 (Fig. 3).

Now, we turn our attention to the roles of entropic
and energetic contributions of different pairs, which lead to
dispersion and agglomeration of NPs. Figure 5 presents the



144901-4 T. K. Patra and J. K. Singh J. Chem. Phys. 138, 144901 (2013)

FIG. 4. The NP-NP RDFs, gnn(r), for m = 50, at different NP-polymer inter-
action strengths (εnp). Representative snapshots corresponding to RDFs are
shown in the inset of all the panels. The connectivity between adjacent beads
of chains is not shown for clarity.

energy and entropy contribution of different pairs separately
for m = 30. We calculate the excess entropy per particle
within two-body approximation,47 corresponding to pair dis-
tribution, which is written as Sij = −2πρ

∫
{gij(r)ln gij(r)

− (gij(r) − 1)}r2dr with i and j representing either NP or poly-
mer. The two-body approximation is highly correlated with
the total excess entropy as seen by Goel et al. for Lennard-
Jones chains fluids.48 Hence, the two-body entropy provides
a reasonable estimate of the total excess entropy of the cur-
rent system.47, 48 The NP-NP interaction energy (Enn) is high-
est at εnp = 0.1, where NPs are in contact (see Fig. 5).
However, when the NPs move away from each other at εnp

> 0.1, Enn decreases. We note that Enn is zero for εnp ≥ 0.5,
indicative of absence of direct NP-NP contact. Snn is lowest
at εnp = 0.1, and with increasing εnp it increases as NPs move
away from each other. However, Snn reaches its maximum at
εnp = 1.0 and it remains almost unchanged until εnp = 2.0.

FIG. 5. The potential energies and entropic contributions of different pairs
for m = 30 as a function of NP-polymer interaction strength (εnp). Energy
and entropy are shown on the left and right y-axes, respectively, in all the
panels. Enn, Snn: NP-NP; Epp, Spp: polymer-polymer; Enp, Snp: NP-polymer.
E = Enn + Epp + Enp. The symbols are the calculated values and lines serve
as a guide to the eye. Closed symbols correspond to energy values and open
symbols correspond to excess entropy values. The error bars are of the order
of symbol sizes.

Subsequently, Snn drops sharply with increase in εnp from 2.0
to 5.0, as the system goes through a structural transition from
a dispersed state to a state where NP-polymer network forms.
We now look at the polymer-polymer contribution as shown
in the top-right panel of Fig. 5. We note that the entropic con-
tribution due to polymer-polymer interaction (Spp) is highest
at εnp = 0.1, which is indicated by a small peak (maximum
value in this case) in Spp vs. εnp plot. At this weak interac-
tion strength, polymer does not mix with the NPs, as also
seen in the snapshot (see Fig. 2) and it tends to maximize
its configuration entropy. The NPs collapse at this weak in-
teraction strength, as a result of polymer mediated entropic
depletion interaction. As εnp increases, Spp slightly decreases
first and subsequently remains almost unchanged. Similarly,
the polymer-polymer pair energy (Epp) is lowest at εnp = 0.1
and increases gradually with increasing εnp. The NP-polymer
pair energy (Enp) on the other hand decreases with increas-
ing εnp as shown in the bottom-left panel of Fig. 5. The en-
tropy due to NP-polymer interaction (Snp), on the contrary,
shows a maximum when the polymer and NPs are well mixed
at εnp = 0.5 and it decreases with further increase in εnp.
Overall, the total energy (E = Enn + Enp + Epp) decreases
with increasing εnp. The total excess entropy of NP-polymer
system can be calculated, within two-body approximation
as S = −2πρ

∑
ij xixj

∫ {gij (r) ln gij (r)−(gij (r) − 1)}r2dr ,
where xi and xj are the mole fractions of ith and jth com-
ponents, respectively.49 S is found to be low at εnp = 0.1
when polymer–NPs phase separate. It increases to a maxi-
mum value when NP and polymer are well mixed at εnp = 0.5.
Subsequently, it decreases with increasing εnp, leading to
bridging of NPs. However, in this low NP volume fraction
limit, the variation of S as a function of εnp is not drastic, as
seen in Fig. 5. The mean square deviation in Spp calculated at
different εnp is 3%; however, it is 107% and 35% in Snn and
Snp, respectively. Further, Snn and Snp behavior is alike with
increasing εnp. But, S changes by a maximum of only 4%,
considering all the cases studied in this work. Snn is found to
be most sensitive with the change in NP-polymer interaction
strength. Therefore, Snn is the most significant and important
quantity to understand the NP-polymer system, when the NPs
volume fraction is very low. To this end, we study the poten-
tial energy per particle (E), along with the entropic contribu-
tion due to NP-NP distribution (Snn), to analyze the physical
properties of NP-polymer system.

The potential of mean force (PMF), 2nd virial co-
efficient, and KBI are also estimated, along with en-
ergy and entropy. The PMF of NP-NP distribution
can be evaluated as VPMF(r) = −kBT ln(gnn(r)),50 and
the corresponding 2nd virial coefficient is B2 = − 1

2

∫ ∞
0

[exp(−βVPMF(r)) − 1]4πr2dr . Here, B2 is the effective per-
turbation from ideal NPs to NP-polymer system which
has significant particle-particle interaction due to the inter-
particle forces and effective induced forces from the solvent,
i.e., polymer matrix. The B2 is essentially a measure of the
tendency of NPs to disperse or aggregate within the system.
A positive value of B2 indicates repulsive force between the
NPs, which prevents any phase separation in the system. On
the other hand, a negative value of B2 is indicative of attraction
among the NPs, which may lead NPs and polymer to phase
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FIG. 6. The 2nd virial coefficient (B2), excess entropy (Snn), potential energy
(E), and KBI (Gnn), as a function of εnp, are shown for m = 1, 30, and 50.
The symbols are the calculated values and lines serve as a guide to the eye.
The error bars are of the order of symbol sizes.

separate. The KBI for the NP-NP distribution is calculated as
Gnn = 4π

∫ ∞
0 [gnn(r) − 1]r2dr .51 As evident from the simi-

larity of the above expression with that of B2, the KBI also
represents the affinity among NPs. KBI provides the informa-
tion about the strength of the NP-NP interaction similar to B2.

Figure 6 presents B2, Snn, E, and Gnn for different εnp val-
ues for all three cases. The B2 attains a large negative value at
εnp = 0.1, for m = 30 and 50. This clearly indicates that NPs
are attractive, and remain in a separate phase, at εnp = 0.1.
In contrast, B2 for m = 1 at εnp = 0.1 is close to zero, where
NPs remain dispersed in the medium. As εnp slightly increases
to 0.5, B2 becomes positive and NPs are well dispersed in
the medium, for m = 30 and 50. The NP-polymer dispersed
state at an intermediate range εnp = 0.5−1.0 is independent of
the polymer chain length. B2 becomes negative at higher εnp

> 1.0, which represents the tendency of NPs to draw closer.
The behavior changes again at a high NP-polymer interac-
tion strength, εnp ≥ 5.0, where B2 decreases sharply to a very
large negative value, and NP-polymer network forms in case
of m = 1 and 30. However, for m = 50, where polymer size
is bigger than NP’s size, B2 is greater than that for the case of
m = 1 and 30. In this case, NPs do not come close to form
any structured cluster. The behavior seen in the second virial
coefficient is also reflected in the Snn values as shown in the
top-right panel of Fig. 6. The lowest Snn, for m = 30 and 50, is
at εnp = 0.1, as NPs and polymer phase separate. In case of m
= 1, NPs and polymer are well mixed at this point and entropy
is high. Slight increase in εnp to 0.5, for m = 30 and 50, leads
to drastic jump in Snn as NPs are now in the dispersed state.
In the intermediate range εnp = 0.5−1.0, i.e., in the dispersed
state, Snn is not sensitive to the polymer chain length. How-
ever, Snn drops significantly with a change in εnp from 2.0 to 5,
akin to that seen in B2. At this interaction strength, system un-
dergoes a structural transition also reflected in the MD snap-
shots of Figs. 2 and 3. Accordingly, energy (see the bottom-
left panel of Fig. 6) shows a sharp decrease, when εnp changes
from 2.0 to 5.0. Therefore, the transition is energy driven. The

FIG. 7. Potential of mean force (PMF) as a function of inter-particle distance
for m = 1, 30, and 50. Top panel corresponds to εnp = 0.1, middle panel
corresponds to εnp = 1.0, and the bottom panel corresponds to εnp = 5.0.

structural transition with NP-polymer interaction strength and
polymer chain length is also reflected in the Kirkwood-Buff
integral values, Gnn. For example, Gnn, at εnp = 0.1, is highest
for m = 30 and 50 corresponding to the complete phase sepa-
ration between the NPs and polymer melt. On the other hand
Gnn, at εnp = 0.1, is lowest for m = 1 representing the disper-
sion of NPs. On the whole, Gnn behavior is a mirror image of
B2. Therefore, we infer that the decrease in B2, Snn, and E, and
the increase in Gnn at large NP-polymer interaction strengths
represent the agglomeration tendency of NPs. The agglomer-
ation tendency leads to a structural transition in the system to
form NP-polymer network.

Now, we will investigate the nature of NP-polymer net-
works which form at strong NP-polymer interaction strength.
Our calculations are equilibrium in nature; however, it has
implication of non-equilibrium phenomena such as gelation.
The polymer mediated gelation or percolation network for-
mation can be identified with the emergence of a minimum in
PMF deeper than −3 to −4 kBT,33, 52, 53 kB and T are Boltz-
mann constant and temperature, respectively. Figure 7 repre-
sents PMF between NPs in three different regions – weak NP-
polymer interaction strength (top panel), intermediate NP-
polymer interaction strength (middle panel), and very strong
NP-polymer interaction strength (bottom panel). In all the
cases, we have seen attractive potential barriers. In the first
panel, at εnp = 0.1, the minimum of PMF is ∼−10 kBT for m
= 30 and 50. The minimum is observed at r = 5.0σ , which in-
dicates the contact aggregation of NPs. Therefore, there is no
polymer layer in between NPs, i.e., NP-polymer network does
not form. Hence, the agglomeration is equilibrium clustering.
This observation is in line with the PRISM theory prediction
of Hooper and Schweizer.34 In the middle panel, at εnp = 1.0,
the depth of the attractive potential well is ∼−2.5 kBT and
the minimum takes place at r = 6.0σ . It is the signature of
layer in between NPs, which are again equilibrium structures.
In the bottom panel, we have shown the PMF for a very strong
NP-polymer interaction strength, εnp = 5.0. The minimum is
deeper than −4 kBT, irrespective of the chain length, which
is the signature of percolating network. NP-polymer network
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FIG. 8. Two branch structures of NPs at different state points as mentioned
in the figure. The connectivity between adjacent beads of chains is not shown
for clarity.

forms due to tight bridging of NPs via polymer. Therefore, we
expect that at very strong NP-polymer interaction strengths
the agglomerations are non-equilibrium structures.

To this end, our conclusion pertaining to the transition
at εnp = 5.0 or higher is in disagreement with the specula-
tion of Liu et al.24 who concluded that the transition from
NPs dispersion to NPs agglomeration is entropy dominated.
The authors did not report the entropy values, and the specu-
lation was based on monitoring the system’s enthalpy, when
NP-polymer interaction strength is changed from intermedi-
ate (εnp = 2.0) to a very high value (εnp = 5.0). The au-
thors noticed insignificant change in enthalpy for the period of
time, 500τ , in an isobaric isothermal ensemble. We attribute
this disagreement to the differences in simulation run length,
coarse-grain model of the NP, and temperature of the system.
Considering the above, the similarity between aggregates ob-
served in this work and that of Liu et al.24 is puzzling, and
possibly, is a coincidence. In this work, we clearly notice a
decrease in entropy and energy when εnp changes from 2.0 to
5.0. We conclude that the transition from two separate phases
to a well-mixed state of the NPs and the polymer chains is
dominated by entropy of the system. However, at higher in-
teraction strength, the transition from well-mixed state to ag-
glomeration state of NPs is driven by the energy of the NP-
polymer system.

We further explore the parameter space to understand all
the possible structures. There exist few branch structures in
between the string-like and sphere-like assemblies, at an in-
termediate chain length (5 < m < 30), and strong NP-polymer
interaction (εnp ≥ 5.0). Figure 8 presents two examples of ob-
served branch structures. Branch structures are also observed
in experimental studies such as for silica-latex system54, 55

and PEO-modified C60 Fullerene.56 We summarize all possi-
ble structures of the NP-polymer system in a phase diagram,
shown in Fig. 9. The transition from collapsed NPs to dis-
persed NPs in the polymer melt at a lower value of εnp is
akin to that predicted from the PRISM theory.33 When εnp in-
creases from an intermediate value to a high value, the system
moves to a new state where NPs and polymer form percolat-
ing network. However, the network changes its shape with the
chain length. For, m = 1, it is string-like. As m increases, the
network is found in a branch structure. Further increase in m
to 30, where radius of gyration of chain and NP’s radius are
of the same order, the network is sphere-like. As polymer size
becomes greater than NP’s size, the aggregation tendency of

FIG. 9. Predicted εnp vs. m phase diagram of NP-polymer system. Symbols
represent the phases as follows: (�) NPs and polymer melt phase separate,
(●) NPs disperse in the polymer melt, (�) string-like assembly of NPs, (★)
branch structure of NPs, (�) spherical shape assemblies of NPs.

NPs is very poor as seen for the case of m = 50. This ob-
servation is in agreement with a recent experiment where Au
NPs are shown to aggregate in a short polystyrene medium,
and an energy barrier induced by the long chain leads to poor
aggregation.10

IV. CONCLUSIONS

In this work, we perform molecular dynamics simula-
tions using a coarse-grain model of nanoparticle to under-
stand the structures and transitions of NP-polymer system.
Our results explain experimentally observed structures and
their transitions using a quantitative measurement of entropy,
internal energy, second virial coefficient, and Kirwood-Buff
integral. This work illustrates the agglomeration and disper-
sion mechanisms of NPs in polymer melt for a wide range of
interaction strength and degree of polymerization. The disper-
sion of NPs in the polymer melt is governed by the entropy of
the system. On the other hand, internal energy dominates to
agglomerate NPs, leading to polymer directed assemblies of
NPs. It is found that, at a very weak NP-polymer interaction
strength, phase separation may occur if the polymer size is
above a critical value. At an intermediate interaction, NPs are
found to be well dispersed in polymer melt irrespective of the
radius of gyration of polymer melt. At a very strong interac-
tion, there is a transition from a string-like agglomeration to a
spherical agglomeration via a series of branch objects, as the
degree of polymerization increases. However, when the radius
of gyration of the polymer is larger than the radius of NP, NPs
do not agglomerate. The two possible structures for very long
chain polymer are – phase separation at very weak interaction
and dispersion of NPs for a wide range of interaction strength.

We present a phase diagram of possible structures, de-
pending on the degree of polymerization and polymer-NP
interaction strength. The phase diagram which is proposed
based on our coarse-grain molecular dynamics simulations
will help to develop a general strategy to control and direct
the assembly of NPs in polymer matrix.
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